GLDEX - Fitting Single and Mixture of Generalised Lambda Distributions
The fitting algorithms considered in this package have two
major objectives. One is to provide a smoothing device to fit
distributions to data using the weight and unweighted
discretised approach based on the bin width of the histogram.
The other is to provide a definitive fit to the data set using
the maximum likelihood and quantile matching estimation. Other
methods such as moment matching, starship method, L moment
matching are also provided. Diagnostics on goodness of fit can
be done via qqplots, KS-resample tests and comparing mean,
variance, skewness and kurtosis of the data with the fitted
distribution. References include the following: Karvanen and
Nuutinen (2008) "Characterizing the generalized lambda
distribution by L-moments" <doi:10.1016/j.csda.2007.06.021>,
King and MacGillivray (1999) "A starship method for fitting the
generalised lambda distributions"
<doi:10.1111/1467-842X.00089>, Su (2005) "A Discretized
Approach to Flexibly Fit Generalized Lambda Distributions to
Data" <doi:10.22237/jmasm/1130803560>, Su (2007) "Nmerical
Maximum Log Likelihood Estimation for Generalized Lambda
Distributions" <doi:10.1016/j.csda.2006.06.008>, Su (2007)
"Fitting Single and Mixture of Generalized Lambda Distributions
to Data via Discretized and Maximum Likelihood Methods: GLDEX
in R" <doi:10.18637/jss.v021.i09>, Su (2009) "Confidence
Intervals for Quantiles Using Generalized Lambda Distributions"
<doi:10.1016/j.csda.2009.02.014>, Su (2010) "Chapter 14:
Fitting GLDs and Mixture of GLDs to Data using Quantile
Matching Method" <doi:10.1201/b10159>, Su (2010) "Chapter 15:
Fitting GLD to data using GLDEX 1.0.4 in R"
<doi:10.1201/b10159>, Su (2015) "Flexible Parametric Quantile
Regression Model" <doi:10.1007/s11222-014-9457-1>, Su (2021)
"Flexible parametric accelerated failure time
model"<doi:10.1080/10543406.2021.1934854>.